§ 4. Задание 205. «Алгебра. 7 класс. Учебник для общеобразовательных организаций» АЛГЕБРА 7 ГДЗ Задание 205

    Задание 205

    Напишите все одночлены, получающиеся изменением порядка множителей одночлена:

      • \({\largeа)}\ 3ab;\)
      • \({\largeб)}\ d(-2)3c;\)
      • \({\largeв)}\ x7yz;\)
      • \({\largeг)}\ a4;\)
      • \({\largeд)}\ ab3;\)
      • \({\largeе)}\ 2ak5;\)
      • \({\largeж)}\ a(-2)bc.\)

    Источник заимствования: Алгебра. 7 класс. Учебник для общеобразовательных организаций / – Просвещение, 2013. – 67 c. ISBN 978-5-09-027739-6
    Реклама
    А+АА-

    Решение:

      • \({\largeа)}\ 3ab;\)
      • \(\phantom{\largeа)}\ 3ba;\)
      • \(\phantom{\largeа)}\ a3b;\)
      • \(\phantom{\largeа)}\ ab3;\)
      • \(\phantom{\largeа)}\ b3a;\)
      • \(\phantom{\largeа)}\ ba3.\)

      • \({\largeб)}\ d(-2)3c;\)
      • \(\phantom{\largeб)}\ d(-2)c3;\)
      • \(\phantom{\largeб)}\ d3(-2)c;\)
      • \(\phantom{\largeб)}\ d3c(-2);\)
      • \(\phantom{\largeб)}\ dc(-2)3;\)
      • \(\phantom{\largeб)}\ dc3(-2);\)
      • \(\phantom{\largeб)}\ (-2)d3c;\)
      • \(\phantom{\largeб)}\ (-2)dc3;\)
      • \(\phantom{\largeб)}\ (-2)3dc;\)
      • \(\phantom{\largeб)}\ (-2)3cd;\)
      • \(\phantom{\largeб)}\ (-2)cd3;\)
      • \(\phantom{\largeб)}\ (-2)c3d;\)
      • \(\phantom{\largeб)}\ 3(-2)dc;\)
      • \(\phantom{\largeб)}\ 3(-2)cd;\)
      • \(\phantom{\largeб)}\ 3d(-2)c;\)
      • \(\phantom{\largeб)}\ 3dc(-2);\)
      • \(\phantom{\largeб)}\ 3c(-2)d;\)
      • \(\phantom{\largeб)}\ 3cd(-2);\)
      • \(\phantom{\largeб)}\ c(-2)3d;\)
      • \(\phantom{\largeб)}\ c(-2)d3;\)
      • \(\phantom{\largeб)}\ c3(-2)d;\)
      • \(\phantom{\largeб)}\ c3d(-2);\)
      • \(\phantom{\largeб)}\ cd(-2)3;\)
      • \(\phantom{\largeб)}\ cd3(-2).\)

      • \({\largeв)}\ x7yz;\)
      • \(\phantom{\largeв)}\ x7zy;\)
      • \(\phantom{\largeв)}\ xy7z;\)
      • \(\phantom{\largeв)}\ xyz7;\)
      • \(\phantom{\largeв)}\ xz7y;\)
      • \(\phantom{\largeв)}\ xzy7;\)
      • \(\phantom{\largeв)}\ 7xyz;\)
      • \(\phantom{\largeв)}\ 7xzy;\)
      • \(\phantom{\largeв)}\ 7yxz;\)
      • \(\phantom{\largeв)}\ 7yzx;\)
      • \(\phantom{\largeв)}\ 7zxy;\)
      • \(\phantom{\largeв)}\ 7zyx;\)
      • \(\phantom{\largeв)}\ y7xz;\)
      • \(\phantom{\largeв)}\ y7zx;\)
      • \(\phantom{\largeв)}\ yx7z;\)
      • \(\phantom{\largeв)}\ yxz7;\)
      • \(\phantom{\largeв)}\ yz7x;\)
      • \(\phantom{\largeв)}\ yzx7;\)
      • \(\phantom{\largeв)}\ z7yx;\)
      • \(\phantom{\largeв)}\ z7xy;\)
      • \(\phantom{\largeв)}\ zy7x;\)
      • \(\phantom{\largeв)}\ zyx7;\)
      • \(\phantom{\largeв)}\ zx7y;\)
      • \(\phantom{\largeв)}\ zxy7.\)

      • \({\largeг)}\ a4;\)
      • \(\phantom{\largeг)}\ 4a.\)

      • \({\largeд)}\ ab3;\)
      • \(\phantom{\largeд)}\ a3b;\)
      • \(\phantom{\largeд)}\ ba3;\)
      • \(\phantom{\largeд)}\ b3a;\)
      • \(\phantom{\largeд)}\ 3ab;\)
      • \(\phantom{\largeд)}\ 3ba.\)

      • \({\largeе)}\ 2ak5;\)
      • \(\phantom{\largeе)}\ 2a5k;\)
      • \(\phantom{\largeе)}\ 2ka5;\)
      • \(\phantom{\largeе)}\ 2k5a;\)
      • \(\phantom{\largeе)}\ 2\cdot5ak;\)
      • \(\phantom{\largeе)}\ 2\cdot5ka;\)
      • \(\phantom{\largeе)}\ a2k5;\)
      • \(\phantom{\largeе)}\ a2\cdot5k;\)
      • \(\phantom{\largeе)}\ ak2\cdot5;\)
      • \(\phantom{\largeе)}\ ak5\cdot2;\)
      • \(\phantom{\largeе)}\ a5\cdot2k;\)
      • \(\phantom{\largeе)}\ a5k2;\)
      • \(\phantom{\largeе)}\ ka2\cdot5;\)
      • \(\phantom{\largeе)}\ ka5\cdot2;\)
      • \(\phantom{\largeе)}\ k2a5;\)
      • \(\phantom{\largeе)}\ k2\cdot5a;\)
      • \(\phantom{\largeе)}\ k5a2;\)
      • \(\phantom{\largeе)}\ k5\cdot2a;\)
      • \(\phantom{\largeе)}\ 5ak2;\)
      • \(\phantom{\largeе)}\ 5a2k;\)
      • \(\phantom{\largeе)}\ 5ka2;\)
      • \(\phantom{\largeе)}\ 5k2a;\)
      • \(\phantom{\largeе)}\ 5\cdot2ak;\)
      • \(\phantom{\largeе)}\ 5\cdot2ka.\)

      • \({\largeж)}\ a(-2)bc;\)
      • \(\phantom{\largeж)}\ a(-2)cb;\)
      • \(\phantom{\largeж)}\ ab(-2)c;\)
      • \(\phantom{\largeж)}\ abc(-2);\)
      • \(\phantom{\largeж)}\ ac(-2)b;\)
      • \(\phantom{\largeж)}\ acb(-2);\)
      • \(\phantom{\largeж)}\ (-2)abc;\)
      • \(\phantom{\largeж)}\ (-2)acb;\)
      • \(\phantom{\largeж)}\ (-2)bac;\)
      • \(\phantom{\largeж)}\ (-2)bca;\)
      • \(\phantom{\largeж)}\ (-2)cab;\)
      • \(\phantom{\largeж)}\ (-2)cba;\)
      • \(\phantom{\largeж)}\ b(-2)ac;\)
      • \(\phantom{\largeж)}\ b(-2)ca;\)
      • \(\phantom{\largeж)}\ ba(-2)c;\)
      • \(\phantom{\largeж)}\ bac(-2);\)
      • \(\phantom{\largeж)}\ bc(-2)a;\)
      • \(\phantom{\largeж)}\ bca(-2);\)
      • \(\phantom{\largeж)}\ c(-2)ba;\)
      • \(\phantom{\largeж)}\ c(-2)ab;\)
      • \(\phantom{\largeж)}\ cb(-2)a;\)
      • \(\phantom{\largeж)}\ cba(-2);\)
      • \(\phantom{\largeж)}\ ca(-2)b;\)
      • \(\phantom{\largeж)}\ cab(-2).\)