§ 5. Задание 311. «Алгебра. 7 класс. Учебник для общеобразовательных организаций» АЛГЕБРА 7 ГДЗ Задание 311

    Задание 311

    Упростите выражение:

      • $${\largeа)}\ (2x-2a)(3a^2-4a+5);$$
      • $${\largeб)}\ (7x^2-2x+4-x^2)(2x-x-1);$$
      • $${\largeв)}\ (x^2+3x-2)(2x^2-x+4);$$
      • $${\largeг)}\ (2m^3-7m^2+4m)(3-8m+m^2);$$
      • $${\largeд)}\ (2a+1)(3+a)(5a+2);$$
      • $${\largeе)}\ (x-3)(2x-1)(7+2x);$$
      • $${\largeж)}\ (2m-n)(3n+2m)(m-5n);$$
      • $${\largeз)}\ (p-8q)(4q-p)(p+8q).$$

    Источник заимствования: Алгебра. 7 класс. Учебник для общеобразовательных организаций / – Просвещение, 2013. – 91 c. ISBN 978-5-09-027739-6
    Реклама
    А+АА-

    Решение:

      • $${\largeа)}\ (2x-2a)(3a^2-4a+5)=6a^2x-6a^3-8ax+8a^2+10x-10a$$

      • $${\largeб)}\ (7x^2-2x+4-x^2)(2x-x-1)=(6x^2-2x+4)(x-1)=6x^3-2x^2+4x-6x^2+2x-4=6x^3-8x^2+6x-4$$

      • $${\largeв)}\ (x^2+3x-2)(2x^2-x+4)=2x^4+6x^3-4x^2-x^3-3x^2+2x+4x^2+12x-8=2x^4+5x^3-3x^2+14x-8$$

      • $${\largeг)}\ (2m^3-7m^2+4m)(3-8m+m^2)=6m^3-21m^2+12m-16m^4+56m^3-32m^2+2m^5-7m^4+4m^3=2m^5-23m^4+66m^3-53m^2+12m$$

      • $${\largeд)}\ (2a+1)(3+a)(5a+2)=(6a+3+2a^2+a)(5a+2)=(7a+3+2a^2)(5a+2)=35a^2+15a+10a^3+14a+6+4a^2=10a^3+39a^2+29a+6$$

      • $${\largeе)}\ (x-3)(2x-1)(7+2x)=(2x^2-6x-x+3)(7+2x)=(2x^2-7x+3)(7+2x)=14x^2-49x+21+4x^3-14x^2+6x=4x^3-43x+21$$

      • $${\largeж)}\ (2m-n)(3n+2m)(m-5n)=(6mn-3n^2+4m^2-2mn)(m-5n)=(4mn-3n^2+4m^2)(m-5n)=4m^2n-3mn^2+4m^3-20mn^2+15n^3-20m^2n=4m^3-16m^2n-23mn^2+15n^3$$

      • $${\largeз)}\ (p-8q)(4q-p)(p+8q)=(4pq-32q^2-p^2+8pq)(p+8q)=(12pq-32q^2-p^2)(p+8q)=12p^2q-32pq^2-p^3+96pq^2-256q^3-8p^2q=4p^2q+64pq^2-p^3-256q^3$$