§ 7. Задание 498. «Алгебра. 7 класс. Учебник для общеобразовательных организаций» АЛГЕБРА 7 ГДЗ Задание 498

    Задание 498

    Приведите к общему знаменателю дроби:

      • \({\largeа)}\ \frac{x}{2}\) и \(\frac{1}{3};\)
      • \({\largeб)}\ \frac{x}{5}\) и \(\frac{-3}{7};\)
      • \({\largeв)}\ \frac{2x}{5}\) и \(\frac{5}{-6};\)
      • \({\largeг)}\ \frac{2}{3}\) и \(\frac{7x}{-4};\)
      • \({\largeд)}\ \frac{5}{3x}\) и \(\frac{7}{6};\)
      • \({\largeе)}\ \frac{11}{2x}\) и \(\frac{3}{7};\)
      • \({\largeж)}\ \frac{4}{x}\) и \(\frac{3}{-x};\)
      • \({\largeз)}\ \frac{1}{5x}\) и \(\frac{13}{-10x};\)
      • \({\largeи)}\ \frac{3}{x}\) и \(\frac{x}{3}.\)

    Источник заимствования: Алгебра. 7 класс. Учебник для общеобразовательных организаций / – Просвещение, 2013. – 130 c. ISBN 978-5-09-027739-6
    Реклама
    А+АА-

    Решение:

      • \({\largeа)}\ \frac{x^{\backslash3}}{2\phantom{^{\backslash3}}}=\frac{x\cdot3}{2\cdot3}=\frac{3x}{6}\) и \(\frac{1^{\backslash2}}{3\phantom{^{\backslash2}}}=\frac{1\cdot2}{3\cdot2}=\frac{2}{6};\)
      • \({\largeб)}\ \frac{x^{\backslash7}}{5\phantom{^{\backslash7}}}=\frac{x\cdot7}{5\cdot7}=\frac{7x}{35}\) и \(\frac{-3^{\backslash5}}{7\phantom{^{\backslash5}}}={-}\frac{3\cdot5}{7\cdot5}={-}\frac{15}{35};\)
      • \({\largeв)}\ \frac{2x^{\backslash6}}{5\phantom{^{\backslash6}}}=\frac{2x\cdot6}{5\cdot6}=\frac{12x}{30}\) и \(\frac{5^{\backslash5}}{-6\phantom{^{\backslash5}}}={-}\frac{5\cdot5}{6\cdot5}={-}\frac{25}{30};\)
      • \({\largeг)}\ \frac{2^{\backslash4}}{3\phantom{^{\backslash4}}}=\frac{2\cdot4}{3\cdot4}=\frac{8}{12}\) и \(\frac{7x^{\backslash3}}{-4\phantom{^{\backslash3}}}={-}\frac{7x\cdot3}{4\cdot3}={-}\frac{21x}{12};\)
      • \({\largeд)}\ \frac{5^{\backslash2}}{3x\phantom{^{\backslash2}}}=\frac{5\cdot2}{3x\cdot2}=\frac{10}{6x}\) и \(\frac{7^{\backslash{x}}}{6\phantom{^{\backslash{x}}}}=\frac{7\cdot{x}}{6\cdot{x}}=\frac{7x}{6x};\)
      • \({\largeе)}\ \frac{11^{\backslash7}}{2x\phantom{^{\backslash7}}}=\frac{11\cdot7}{2x\cdot7}=\frac{77}{14x}\) и \(\frac{3^{\backslash2x}}{7\phantom{^{\backslash2x}}}=\frac{3\cdot2x}{7\cdot2x}=\frac{6x}{14x};\)
      • \({\largeж)}\ \frac{4^{\backslash1}}{x\phantom{^{\backslash1}}}=\frac{4\cdot1}{x\cdot1}=\frac{4}{x}\) и \(\frac{3^{\backslash1}}{-x\phantom{^{\backslash1}}}={-}\frac{3\cdot1}{x\cdot1}={-}\frac{3}{x};\)
      • \({\largeз)}\ \frac{1^{\backslash2}}{5x\phantom{^{\backslash2}}}=\frac{1\cdot2}{5x\cdot2}=\frac{2}{10x}\) и \(\frac{13^{\backslash1}}{-10x\phantom{^{\backslash1}}}={-}\frac{13\cdot1}{10x\cdot1}={-}\frac{13}{10x};\)
      • \({\largeи)}\ \frac{3^{\backslash3}}{x\phantom{^{\backslash3}}}=\frac{3\cdot3}{x\cdot3}=\frac{9}{3x}\) и \(\frac{x^{\backslash{x}}}{3\phantom{^{\backslash{x}}}}=\frac{x\cdot{x}}{3\cdot{x}}=\frac{x^2}{3x}.\)