§ 5. Задание 141. «Алгебра. Рабочая тетрадь. 7 класс. В 2 частях. Часть 1» АЛГЕБРА 7 ГДЗ Задание 141

    Задание 141

    Упростите выражение:

      • \({\largeа)}\ 5+(3a-5b+7c)-(7c-5b+3a)=\ \)
      • \({\largeб)}\ 7-(3x-4y+1)-(4y-3x+1)=\ \)
      • \({\largeв)}\ 4x-(2x-7y+6)+(11-2x-7y)=\ \)
      • \({\largeг)}\ 3y+(x+y-7)-(4y-12+x)=\ \)
      • \({\largeд)}\ (a-b)-(c-b)-(a-c)=\ \)
      • \({\largeе)}\ {-}(a-b)-(b-c)-(c-a)=\ \)

    Источник заимствования: Алгебра. Рабочая тетрадь. 7 класс. В 2 частях. Часть 1 / – Просвещение, 2018. – 52 c. ISBN 978-5-09-051661-7
    Реклама
    А+АА-

    Решение:

      • \({\largeа)}\ 5+(3a-5b+7c)-(7c-5b+3a)=5\ +\)\(3a\)\(-\)\(5b\)\(+\)\(7c\)\(-\)\(7c\)\(+\)\(5b\)\(-\)\(3a\)\(=5\)
      • \({\largeб)}\ 7-(3x-4y+1)-(4y-3x+1)=\)\(7\)\(-\)\(3x\)\(+\)\(4y\)\(-\)\(1\)\(-\)\(4y\)\(+\)\(3x\)\(-\)\(1\)\(=5\)
      • \({\largeв)}\ 4x-(2x-7y+6)+(11-2x-7y)=\)\(4x\)\(-\)\(2x\)\(+\)\(7y\)\(-\)\(6\)\(+\)\(11\)\(-\)\(2x\)\(-\)\(7y\)\(=5\)
      • \({\largeг)}\ 3y+(x+y-7)-(4y-12+x)=\)\(3y\)\(+\)\(x\)\(+\)\(y\)\(-\)\(7\)\(-\)\(4y\)\(+\)\(12\)\(-\)\(x\)\(=5\)
      • \({\largeд)}\ (a-b)-(c-b)-(a-c)=\)\(a\)\(-\)\(b\)\(-\)\(c\)\(+\)\(b\)\(-\)\(a\)\(+\)\(c\)\(=0\)
      • \({\largeе)}\ {-}(a-b)-(b-c)-(c-a)={-}\)\(a\)\(+\)\(b\)\(-\)\(b\)\(+\)\(c\)\(-\)\(c\)\(+\)\(a\)\(=0\)