Запишите обыкновенную дробь в виде периодической дроби:
- \(\begin{array}[t]{ll}\begin{array}{l}\phantom{\ }\frac{1}{3}=\frac{3}{9}=0{,}(3);\\[0.9ex]\frac{3}{11}=\frac{27}{99}=0{,}(27);\\[0.9ex]\frac{5}{90}=0{,}0(5)\\[0.1ex]\end{array}&&&\begin{array}{l}\\\begin{array}{l}5{,}000{...}\\450\\\hline\end{array}\begin{array}{|l}90\\\hline0{,}0555{...}\\\end{array}\\\phantom{0}\begin{array}{r}500\\450\\\hline\end{array}\\\phantom{00}\begin{array}{l}500\\{...}\end{array}\end{array}\end{array}\)
- \({\largeа)}\ \frac{2}{11}=\phantom{\ .}\definecolor{dots}{RGB}{110,177,146}\color{dots}{\large....................}\)
- \({\largeб)}\ \frac{10}{11}=\phantom{0}\color{dots}{\large....................}\)
- \({\largeв)}\ \frac{5}{33}=\phantom{0}\color{dots}{\large....................}\)
- \({\largeг)}\ \frac{28}{33}=\phantom{0}\color{dots}{\large....................}\)
- \({\largeд)}\ \frac{7}{90}=\phantom{0}\color{dots}{\large....................}\)
- \({\largeе)}\ \frac{8}{90}=\phantom{0}\color{dots}{\large....................}\)
- \({\largeж)}\ \frac{23}{990}=\phantom{\ }\color{dots}{\large...................}\)
- \({\largeз)}\ \frac{125}{999}=\phantom{0}\color{dots}{\large...................}\)