Запишите периодическую дробь в виде обыкновенной дроби:
- \(\begin{array}[t]{lll}\begin{array}{l}x=0{,}(1),\\[0.9ex]x=0{,}111{...},\\[0.9ex]10x=1{,}111{...},\\[0.9ex]10x-x=1,\\[0.9ex]9x=1,\\[0.9ex]x=\frac{1}{9};\end{array}&&&\begin{array}{l}x=0{,}(13),\\[0.9ex]x=0{,}131313{...},\\[0.9ex]100x=13{,}131313{...},\\[0.9ex]100x-x=13,\\[0.9ex]99x=13,\\[0.9ex]x=\frac{13}{99};\end{array}&&&\begin{array}{l}x=0{,}(751),\\[0.9ex]x=0{,}751751{...},\\[0.9ex]1000x=751{,}751751{...},\\[0.9ex]1000x-x=751,\\[0.9ex]999x=751,\\[0.9ex]x=\frac{751}{999}.\end{array}\end{array}\)
- \({\largeа)}\ x=0{,}(2);\)
- \({\largeб)}\ x=0{,}(3);\)
- \({\largeв)}\ x=0{,}(14);\)
- \(\definecolor{dots}{RGB}{110,177,146}{\color{dots}{\large........................................................................}}\)
- \({\color{dots}{\large........................................................................}}\)
- \({\color{dots}{\large........................................................................}}\)
- \({\color{dots}{\large........................................................................}}\)
- \({\color{dots}{\large........................................................................}}\)
- \({\largeг)}\ x=0{,}(43);\)
- \({\largeд)}\ x=0{,}(359);\)
- \({\largeе)}\ x=0{,}(740).\)
- \({\color{dots}{\large........................................................................}}\)
- \({\color{dots}{\large........................................................................}}\)
- \({\color{dots}{\large........................................................................}}\)
- \({\color{dots}{\large........................................................................}}\)
- \({\color{dots}{\large........................................................................}}\)