\({\largeа)}\ \frac{x+y}{y}=3,\)
\(\phantom{\largeа)}\ \frac{x}{y}+\frac{y}{y}=3,\)
\(\phantom{\largeа)}\ \frac{x}{y}+1=3,\)
\(\phantom{\largeа)}\ \frac{x}{y}=3-1,\)
\(\phantom{\largeа)}\ \frac{x}{y}=2;\)
\({\largeб)}\ \frac{y}{x+y}=\left(\frac{x+y}{y}\right)^{{-}1}=3^{{-}1}=\frac{1}{3};\)
\({\largeв)}\ \frac{x+y}{y}=3,\)
\(\phantom{\largeв)}\ \frac{x}{y}+\frac{y}{y}=3,\)
\(\phantom{\largeв)}\ \frac{x}{y}+1=3,\)
\(\phantom{\largeв)}\ \frac{x}{y}=3-1,\)
\(\phantom{\largeв)}\ \frac{x}{y}=2,\)
\(\phantom{\largeв)}\ \frac{x-y}{y}=\frac{x}{y}-\frac{y}{y}=2-1=1;\)
\({\largeг)}\ \frac{x+y}{y}=3,\)
\(\phantom{\largeг)}\ \frac{x}{y}+\frac{y}{y}=3,\)
\(\phantom{\largeг)}\ \frac{x}{y}+1=3,\)
\(\phantom{\largeг)}\ \frac{x}{y}=3-1,\)
\(\phantom{\largeг)}\ \frac{x}{y}=2,\)
\(\phantom{\largeг)}\ \frac{y}{x}=\left(\frac{x}{y}\right)^{{-}1}=2^{{-}1}=\frac{1}{2}.\)