\({\largeа)}\ \vphantom{\frac{0}{0}}1{,}(56)>1{,}56;\)
\(\phantom{\largeа)}\ \)так как:
\(\vphantom{\frac{0}{0}}\phantom{\largeа)}\ 1{,}(56)=1{,}5656{...}\)
\({\largeб)}\ \vphantom{\frac{0}{0}}{-}4{,}(45)<{-}4{,}45;\)
\(\phantom{\largeб)}\ \)так как:
\(\vphantom{\frac{0}{0}}\phantom{\largeб)}\ {-}4{,}(45)={-}4{,}4545{...}\)
\({\largeв)}\ 1\frac{2}{3}<1{,}6668;\)
\(\phantom{\largeв)}\ \)так как:
\(\phantom{\largeв)}\ 1\frac{2}{3}=1{,}6666{...}\)
\({\largeг)}\ {-}0{,}228<{-}\frac{5}{22};\)
\(\phantom{\largeг)}\ \)так как:
\(\phantom{\largeг)}\ {-}\frac{5}{22}={-}0{,}22727{...}\)
\({\largeд)}\ \vphantom{\frac{0}{0}}\pi>3{,}1415;\)
\(\phantom{\largeд)}\ \)так как:
\(\vphantom{\frac{0}{0}}\phantom{\largeд)}\ \pi=3{,}14159{...}\)
\({\largeе)}\ \vphantom{\frac{0}{0}}3{,}(14)<\pi.\)
\(\phantom{\largeе)}\ \)так как:
\(\vphantom{\frac{0}{0}}\phantom{\largeе)}\ 3{,}(14)=3{,}1414{...}\)
\(\phantom{\largeе)}\ \pi=3{,}1415{...}\)