\({\largeа)}\ \vphantom{\frac{0}{0}}9{,}835{...}<9{,}847{...};\)
\({\largeб)}\ \vphantom{\frac{0}{0}}{-}1{,}(27)<{-}1{,}272;\)
\(\phantom{\largeб)}\ \)так как:
\(\phantom{\largeб)}\ {-}1{,}(27)={-}1{,}2727{...}\)
\({\largeв)}\ \vphantom{\frac{0}{0}}0{,}06(3)>0{,}0624;\)
\(\phantom{\largeв)}\ \)так как:
\(\phantom{\largeв)}\ 0{,}06(3)=0{,}0633{...}\)
\({\largeг)}\ 2\frac{1}{7}>2{,}142;\)
\(\phantom{\largeг)}\ \)так как:
\(\phantom{\largeг)}\ 2\frac{1}{7}=2{,}1428{...}\)
\({\largeд)}\ 1{,}(375)>1\frac{3}{8};\)
\(\phantom{\largeд)}\ \)так как:
\(\phantom{\largeд)}\ 1{,}(375)=1{,}375375{...}\)
\(\phantom{\largeд)}\ 1\frac{3}{8}=1{,}375\)
\({\largeе)}\ {-}3{,}(16)<{-}3\frac{4}{25}.\)
\(\phantom{\largeе)}\ \)так как:
\(\phantom{\largeе)}\ {-}3{,}(16)={-}3{,}1616{...}\)
\(\phantom{\largeе)}\ {-}3\frac{4}{25}={-}3{,}16\)